247 research outputs found

    Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states

    Get PDF
    Entanglement witnesses provide a standard tool for the analysis of entanglement in experiments. We investigate possible nonlinear entanglement witnesses from several perspectives. First, we demonstrate that they can be used to show that the set of separable states has no facets. Second, we give a new derivation of nonlinear witnesses based on covariance matrices. Finally, we investigate extensions to the multipartite case.Comment: 12 pages, 2 figures, for the proceedings of DICE2006 in Piombino (Italy

    Lower bounds on entanglement measures from incomplete information

    Full text link
    How can we quantify the entanglement in a quantum state, if only the expectation value of a single observable is given? This question is of great interest for the analysis of entanglement in experiments, since in many multiparticle experiments the state is not completely known. We present several results concerning this problem by considering the estimation of entanglement measures via Legendre transforms. First, we present a simple algorithm for the estimation of the concurrence and extensions thereof. Second, we derive an analytical approach to estimate the geometric measure of entanglement, if the diagonal elements of the quantum state in a certain basis are known. Finally, we compare our bounds with exact values and other estimation methods for entanglement measures.Comment: 9 pages, 4 figures, v2: final versio

    Generation of highly non-classical n-photon polarization states by super-bunching at a photon bottleneck

    Get PDF
    It is shown that coherent superpositions of two oppositely polarized n-photon states can be created by post-selecting the transmission of n independently generated photons into a single mode transmission line. It is thus possible to generate highly non-classical n-photon polarization states using only the bunching effects associated with the bosonic nature of photons. The effects of mode-matching errors are discussed and the possibility of creating n-photon entanglement by redistributing the photons into n separate modes is considered.Comment: 8 pages, including 4 figures, extended version of the original letter paper, includes discussion of linear polarization statistic

    Multiparticle entanglement under the influence of decoherence

    Get PDF
    We present a method to determine the decay of multiparticle quantum correlations as quantified by the geometric measure of entanglement under the influence of decoherence. With this, we compare the robustness of entanglement in GHZ-, cluster-, W- and Dicke states of four qubits and show that the Dicke state is most robust. Finally, we determine the geometric measure analytically for decaying GHZ and cluster states of an arbitrary number of qubits.Comment: 5 pages, 3 figures, v2: final version, to appear as a Rapid Communication in PR

    Covariance matrices and the separability problem

    Get PDF
    We propose a unifying approach to the separability problem using covariance matrices of locally measurable observables. From a practical point of view, our approach leads to strong entanglement criteria that allow to detect the entanglement of many bound entangled states in higher dimensions and which are at the same time necessary and sufficient for two qubits. From a fundamental perspective, our approach leads to insights into the relations between several known entanglement criteria -- such as the computable cross norm and local uncertainty criteria -- as well as their limitations.Comment: 4 pages, no figures; v3: final version to appear in PR

    Estimating entanglement measures in experiments

    Full text link
    We present a method to estimate entanglement measures in experiments. We show how a lower bound on a generic entanglement measure can be derived from the measured expectation values of any finite collection of entanglement witnesses. Hence witness measurements are given a quantitative meaning without the need of further experimental data. We apply our results to a recent multi-photon experiment [M. Bourennane et al., Phys. Rev. Lett. 92, 087902 (2004)], giving bounds on the entanglement of formation and the geometric measure of entanglement in this experiment.Comment: 4 pages, 1 figure, v2: final versio
    • …
    corecore